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SUMMARY

We consider the assessment of the overall diagnostic accuracy of a sequence of tests (e.g. repeated
screening tests). The complexity of diagnostic choices when two or more continuous tests are used
in sequence is illustrated, and different approaches to reducing the dimensionality are presented and
evaluated. For instance, in practice, when a single test is used repeatedly in routine screening, the same
screening threshold is typically used at each screening visit. One possible alternative is to adjust the
threshold at successive visits according to individual-specific characteristics. Such possibilities represent
a particular slice of a receiver operating characteristic surface, corresponding to all possible combinations
of test thresholds. We focus in the development and examples on the setting where an overall test is defined
to be positive ifany of the individual tests are positive (‘believe the positive’). The ideas developed are
illustrated by an example of application to screening for prostate cancer using prostate-specific antigen.

Keywords: Receiver operator characteristic curve; Sensitivity; Sequential diagnostic tests; Specificity.

1. INTRODUCTION

Methods for characterizing the accuracy of a single diagnostic test are well established. For tests whose
outcome is measured on a continuous scale, for instance, the receiver operating characteristic (ROC)
curve provides a summary which displays, for given diseased and non-diseased populations, the sensitivity
and (1-) specificity associated with each possible test threshold. With repeated diagnostic tests as in, for
example, routine screening, each individual test is associated with an ROC curve but the overall accuracy
of, say, a sequence ofT tests is not clearly defined and this issue has not received much attention in the
literature. Our focus in considering the accuracy of a test or sequence of tests will be on the sensitivity
and specificity associated with the test(s).

Our particular focus here will be the setting where tests are implementedsequentially and where there
is interest in arriving at a diagnosis without necessarily carrying out the full array of tests. This may arise,
for instance, when a battery of increasingly expensive/invasive tests is used towards diagnosis or in a
routine screening programme where an individual may be screened ‘positive’ at any screening occasion
without the full complement of screening tests (over future years) being available.

Two main approaches to defining an overall positive test have been considered in these settings. In
the first example above it might be appropriate to define an individual as testing overall positive if the
results ofall their tests are positive. In the literature this is referred to as ‘believe the negative’ (BN).
Here individuals who test negative on any particular test will not receive subsequent tests. Alternatively,
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342 M. L. THOMPSON ET AL.

as would be appropriate in a screening programme, an individual might be defined to be overall positive
if they test positive onany test (‘believe the positive’, BP). Here, individuals who test positive on any
particular test will not receive subsequent tests.

Consider, for instance, screening tests for prostate cancer using prostate-specific antigen (PSA) which
are repeated over time. Etzioniet al. (1999) have considered estimating the ROC curve for PSA at a single
time point (uyears prior to clinical diagnosis). We are concerned here rather withoverall sensitivity and
specificity, by which we mean the true positive and true negative rates associated with an entire body of
testing. Elmoreet al. (1998), in the context of breast cancer screening, note the problem of accrual of false
positives over time. In their retrospective study over a 10 year period, one-third of women screened had
an abnormal test result that required additional evaluation, even though no breast cancer was present. The
authors comment that ‘Techniques are needed to decrease false positive results while maintaining high
sensitivity’.

The literature on multiple testing has focused primarily on multiple binary tests (see, for example,
Politser (1982), Marshall (1989), Lau (1991), Ten Have and Bixler (1997)). Kraemer (1992), in her book
on evaluating medical tests, considers combining continuous tests, implemented in sequence or in parallel,
and the consequences in terms of overall costs and benefits. Tolleyet al. (1991) and Murtaugh (1995)
consider repeated applications of the same continuous test where a positive test outcome is associated
with the same threshold at each test application. As we will discuss, this is but one special case of the
more general range of positivity definitions that are available in this setting. We are otherwise aware of
very little in the literature that considers the the general question of the evaluation of accuracy in the
context of sequentialcontinuous tests.

There has been some focus in recent literature (Su and Liu, 1993; Pepe and Thompson, 2000) on
identifying the optimal linear combination of a set of test outcomes. This differs from what we will
consider here in two respects: firstly, these approaches requireall tests to be applied to each individual,
which need not be the case in the kind of setting that we consider here. If one is screening for cancer, for
instance, one is not necessarily going to wait until one has accrued ten years of annual test results before
deciding on an individual’s screening status. Secondly, and as a consequence of the first point, the decision
rules that we will consider will not necessarily be restricted to linear combinations of the individual test
results.

Our aim here is to take a more general approach to the evaluation of accuracy of a sequence of tests,
thereby highlighting some of the complexities which should be considered (and exploited) in determining
how multiple tests should be implemented and evaluated. We will focus primarily on the BP rule, which
is appropriate for repeated screening tests, but the general ideas that we introduce apply equally to BN
rules or other positivity definitions. In Section 2 we present expressions for sensitivity and specificity
corresponding to two tests and illustrate the ideas with a hypothetical example. Section 3 suggests
alternatives to the conventional use of constant thresholds for defining positive tests. Section 4 contains
an example of application to screening for prostate cancer using PSA and Section 5 concludes with a
discussion.

2. TWO TESTS

Wewill use the following notation throughout:D is a binary random variable denoting disease status.
Weassume that some definitive gold standard is used to ascertainD. Let SeX andSpX denote respectively
the sensitivity and specificity of a diagnostic test,X . Although our primary interest is the sequential
administration of continuous tests, it is informative to examine first somewhat simpler settings which are
special cases of the more general one. We are concerned throughout with theoretical relationships, rather
than questions of inference.
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Assessing the diagnostic accuracy of a sequence of tests 343

2.1 Two binary tests

Let X1 and X2 denote two binary diagnostic tests. One setting might be that whereX2 is the same test
as X1, administered at a subsequent time point. Here, as we have discussed, a positive outcome of the
combined screeningX1 + X2 might be defined to occur ifeither X1 or X2 were positive (‘believe the
positive’, BP). We will denote this particular combination of individual tests byX1 ∨ X2, where

SeX1∨X2 = 1 − P(X2 = negative|X1 = negative, D)(1 − SeX1)

SpX1∨X2 = P(X2 = negative|X1 = negative, D̄)SpX1.

It is easily seen that the sensitivity of the combined testX1 ∨ X2 is greater than or equal to that of
either test administered on its own and, similarly, the specificity is less than or equal to application of an
individual test. Similarly, if the combined test isX1 ∧ X2 (BN), it is again easily seen that the sensitivity
of the combined tests is less than or equal to and the specificity greater than or equal to that of either test
on its own.

In either setting, the accuracy of the combined test is well defined and can be summarized by its
sensitivity and specificity. The comparison of application of a single test with both tests involves a
comparison of different points in ROC space: those associated with the testsX1, X2 on their own,X1∨ X2
(BP) andX1 ∧ X2 (BN). Any preference of one point over the other will involve a consideration of the
costs associated with false positives and false negatives and with application of the tests.

2.2 One test binary, one continuous

Assume now thatX1 is a binary test, but that it is followed by a continuous test,X2, where large values
of X2 are more indicative of disease, i.e. a positive test outcome is defined to occur whenX2 > c, for
some thresholdc. We will again consider the combined test,X1 ∨ X2 (BP). Results for the setting where
a positive outcome is associated withboth tests being positive again follow similarly.

The diagnostic accuracy for the binary testX1 may be summarized by the ordered pair (SpX1, SeX1).
For the combined test there will be a different accuracy for each possible threshold,c, of X2. Note that,
when c = ∞, SeX1∨X2(c) = SeX1 and SpX1∨X2(c) = SpX1 so that the diagnostic performance of
both X1 alone andX1 and X2 combined can be described by a single ROC curve with lower left-hand
bound (1− SpX1, SeX1). It is clear, then, that application ofX1 alone corresponds to min(Sensitivity) and
max(Specificity) of the possible implementations of the combined tests. The combination of two binary
tests discussed above is clearly a special case of this.

Letting F2.1D and F2.1D̄ denote the conditional distribution functions forX2 when X1 is negative in
the diseased and non-diseased populations respectively, then

SeX1∨X2(c) = 1 − F2.1D(c)(1 − SeX1)

whereF2.1D(c) then represents the fraction of false negatives which are maintained, relative to application
of X1 alone, and

SpX1∨X2(c) = F2.1D̄(c)SpX1

whereF2.1D̄(c) represents the fraction of specificity that is maintained, relative to application ofX1 alone.
The ROC curve for the combined test may be expressed as

ROC(X1∨X2)(s) = 1 − F2.1D

(
F−1

2.1D̄

(
1 − s

SpX1

))
(1 − SeX1) (1)

for s � 1 − SpX1 and wheres is the overall false positive fraction for the combined test.
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344 M. L. THOMPSON ET AL.

As noted above, the accuracy characteristics of application ofX1 alone are represented by the lower
left-hand endpoint of this curve (s= 1− SpX1). An example illustrating this setting is provided in Section
2.4. It is clear, then, that a comparison of the performance ofX1 with X1 ∨ X2 involves a comparison of
different points on the same ROC curve and will hence depend on the associated costs of the tests and
of the consequences of mis-diagnoses. Similar remarks apply for the setting where the combined test is
defined to beX1 ∧ X2 and that whereX1 is assumed to be continuous andX2 binary.

2.3 Two continuous tests

All of the above are special cases of the application of two continuous diagnostic tests. These may, for
instance, be sequential applications of the same test in a routine screening programme or a series of
different tests implemented in sequence towards diagnosis. We will again focus here on the setting where
a positive outcome is defined to occur wheneither one of the tests is positive. Similar lines of argument
follow for the BN setting. The diagnostic accuracy of any single continuous test,Xt , may be described by
the corresponding ROC curve. When one considers a similar summary for, say,X1 ∨ X2, the situation is
more complex.

With continuous tests, test thresholds are frequently defined in terms of percentiles of the distribution
in the non-diseased and we will use the notationctp to denote thepth percentile ofXt in the non-diseased.
We note again that we focus here on illuminating theoretical relationships and hence we are referring to
the percentiles of the underlying theoretical distributions rather than to empirical percentiles.

We will consider initially the definition of a positive test which is such that, for any givenc1p1 and
c2p2, an individual may be defined to test positive ifX1 � c1p1 or X2 � c2p2. Note that here atp2 = 1.0
(p1 = 1.0), this just reduces to an application ofX1(X2). Essentially, each particular choice of threshold
for X1, say, results in an ROC curve of the form in equation (1) above. For fixedp1, the combined ROC
curve may be expressed in terms of the distribution functionsF1D and F1D̄ of X1 in the diseased and
non-diseased populations and the conditional (givenX1 < c1p1) distribution functions forX2, F2.1D and
F2.1D̄:

ROCX1∨X2(s|p1) = 1 − F2.1D

(
F−1

2.1D̄

(
1 − s

p1

))
F1D(c1p1) (2)

for s � 1− p1 and wheres is the false positive fraction for the combined test. Note that specificities above
p1 are not achievable for the combined test. Again, the situations described in Sections 2.1 and 2.2 above
are special cases of this result.

It is clear, then, that the notion of an ROC curve for a single continuous test is replaced by that of an
ROCsurface, when there are two (or more) tests. Typically, in current practice, when the same screening
test is implemented sequentially, the same threshold, or the same percentile (in the non-diseased), is used
to define positivity at each application of the test (i.e.p1 = p2). In this setting, the summary of accuracy
may be represented by a single ROC curve, but the above discussion illustrates that the use of equal
thresholds represents only one of an infinite number of possible(p1, p2) choices and not necessarily one
that is optimal in terms of accuracy characteristics.

One might consider, instead, optimizing overp1 to define a single ROC curve forX1 ∨ X2 of the form

MaxROC(s) = max
p1

ROC(s|p1).

Each point on the MaxROC curve would be associated with thresholds(p1, p2) which are such that they
maximize the overall sensitivity at that overall specificity (and vice versa). The sensitivity for any given
specificity will be at least as high as that for either of the individual tests, applied on its own. It should
also be noted that this is equivalent to identifying the thresholds(p1, p2) that are associated with the ROC
curve for the sequence of tests which has maximal area under the curve.
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Assessing the diagnostic accuracy of a sequence of tests 345

2.4 Hypothetical example

To illustrate these ideas, consider repeated application att = 1,2 of a diagnostic test which isN (0,1)

distributed in the non-diseased population, with correlationρ = 0.4 between successive measurements on
the same individual andN (0.25,2), N (1,1) in the diseased population, withρ = 0.8. This corresponds
to the setting where it is anticipated that progression of disease will lead to an increase in the level of the
test and where successive measurements are more highly correlated in diseased individuals.

Consider, for example, the situation where the positivity threshold for the first test is set at the 80th
percentile of the non-diseased (i.e.p1 = 0.8). Then the overall specificity of the sequence of two tests will
beat most 80%. If the second test also has positivity threshold set at the 80th percentile (p2 = 0.8), it can
be shown that in this setting the overall specificity is 68% and the overall sensitivity is 60%. If, instead, the
second test is implemented at a positivity threshold corresponding to the 90th percentile (p2 = 0.9), then
the overall specificity of the two tests will be 74% and the overall sensitivity 48%. These two points on
the general ROCsurface are also points on the ROCcurve for the sequence of tests corresponding to fixed
p1 = 0.8 which is shown in Figure 1(a) (‘ConROC’). As discussed in Section 2.2, the lower endpoint of
this curve corresponds to the implementation ofX1 alone (atp1 = 0.8).

Alternatively, say one has a target of an overall false positive fraction of 10%. It can be shown that
this might, for instance, be achieved in this setting by choice of thresholdsp1 = 0.91 andp2 = 0.99 with
associated overall sensitivity 30%, orp1 = p2 = 0.943 with associated overall sensitivity 35% and so on.
The latter case is a point on the ROC curve corresponding to all possible choices ofp1 = p2 (‘EqROC’)
and is also shown in Figure 1(a). The maximum sensitivity that is possible with this specificity is 39%,
corresponding to a choice of thresholdsp1 = 0.996 andp2 = 0.903. This is a point on the ‘MaxROC’
curve, also shown in Figure 1(a). Because the expression for the ROC surface in this setting cannot be
expressed in closed form (see (2) above), these maxima were identified by a grid search.

Note that, if the tests were independent, 90% overall specificity for two tests using equal thresholds
would be achieved by fixing this threshold at the 94.9th percentile of the non-diseased at each test. With
ρ > 0, the threshold corresponding to a given overall specificity will decrease with increasingρ.

This example illustrates some of the additional choices that arise in sequential application of tests. The
sameoverall false positive rate of 10% can be achieved by accruing varying false positives at each time
of testing. Each choice of (p1, p2) will be associated with a different overall sensitivity. It is seen that, in
this example, choice of equal thresholds (p1 = p2) is sub-optimal for most specificities.

3. ALTERNATIVE A PPROACHES TO DEFINING POSITIVE TESTS

3.1 Adaptive thresholds

The above discussion assumes that, while positivity thresholds may differ from one test application,Xt ,
to the next, at any particular application (i.e. fixedt), the same threshold is used to define a positive test
on all individuals. In practice, even with once-off implementation of a test, one might consider varying
the threshold according to an individual’s personal characteristics (such as age, ethnicity, height and
weight). With sequential testing, one can also consider the idea ofadaptive thresholds, where the threshold
implemented at timet depends on the prior measurements on the individual at times 1,2, . . . , t − 1. The
rationale for this would be that there is likely to be greater between-individual than within-individual
variability and hence improved screening characteristics might be expected when one takes the priorpath
of the individual into account. These ideas are developed in the context of adaptive reference ranges by
Thompson and Fatti (1997) and Fattiet al. (1998).

In practice, as discussed above, the choice of threshold often corresponds to some percentile of the
distribution in the non-diseased. Analogously, in the multivariate normal setting considered by Thompson
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Fig. 1. ROC curves for two sequential tests.

and Fatti (1997), for instance, the adaptive threshold att might be the corresponding percentile of the
distribution ofXt in the non-diseased,conditional on past measurements at times 1,2, . . . , t − 1. When
t = 2, this corresponds to choice of threshold forX2 of µ2D + ρ

σ2
σ1

(X1 − µ1D) + z pσ2

√
1 − ρ2, where

µt D andσ 2
t are the mean and variance ofXt , ρ is the correlation betweenX1 and X2 andz p is the pth

percentile of the standard normal distribution.
For two tests and the BP rule, for any given(p1, p2), a positive outcome might be defined to

occur whenX1 exceeds itsp1th percentile (in the non-diseased) orX2 exceeds thep2th percentile of
the conditional distribution of X2|X1 (in the non-diseased). Hence, as in Section 2.3, we have here
another ROC surface which, in the bivariate normal setting with equal variance–covariance structure in
the diseased and non-diseased populations, corresponds to

ROCX1∨X2(s|p1) = 1 − �

(
µ1D − µ1D

σ1
+ z p1

)
�

(
µ2D − µ2D − ρ

σ2
σ1

(µ1D − µ1D)

σ2

√
1 − ρ2

+ z 1−s
p1

)

for s � 1 − p1, wheres is the false positive fraction of the combined test andµ1D, µ2D denote the test
means in the diseased population at timest = 1,2.

It should be noted that, for any given sequence of positivity thresholds,p1, p2, . . . , pT , for the
sequence of conditional distributions, the associated overall specificity is given by�T

t=1 pt . In contrast,
the overall specificity associated with a similar sequence of unconditional thresholds cannot be uniquely
specified (see examples in Section 2.4) and will depend on the variance–covariance structure of theT
tests.

As in Section 2.3, one can also consider in this setting the special cases corresponding to choice of
equal percentile thresholds (p1 = p2 = √

1 − s, for T = 2 and overall specificity 1−s) and the MaxROC
curve, where, for eachs, p1 is chosen so as to maximize ROC(s|p1) (again, forT = 2). Each of these
represents a particular two-dimensional slice of the multivariate ROC surface, which we will denote by
the ‘AdROC’ and ‘MaxAdROC’ curves respectively. Hence forT = 2 and overall specificity 1− s, the
AdROC represents the overall sensitivity that is attained when each test has positivity threshold equal to
the

√
1 − sth conditional percentile and the MaxAdROC curve represents the maximum possible overall
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Assessing the diagnostic accuracy of a sequence of tests 347

sensitivity when conditional percentiles are used as thresholds, but the percentiles may differ between the
tests.

Figure 1(b) shows the theoretical AdROC and MaxAdROC curves resulting from implementing
adaptive thresholds in the hypothetical example presented in Section 2.4. Also shown is the constant (non-
adaptive) threshold MaxROC curve. Consider again, for instance, a target overall specificity of 90%. This
can be achieved using the

√
90 = 94.9th conditional percentile as the positivity threshold for each test.

The associated overall sensitivity is 37%. ForX1 this will simply involve defining a positive outcome when
X1 > 1.64; forX2, the threshold will be individual-specific and will depend on the measurement att = 1.
The maximum possible overall sensitivity in this setting is 40%, achieved usingp1 = 0.986,p2 = 0.913.
The maximisation was carried out using the command ‘optimize’ in Splus (Statistical Sciences, 1995).

Here, use of the adaptive thresholds with equalconditional percentiles at each time of testing
represents accuracy approximately equal to that for the optimal constant thresholds (varying across
times of testing, but the same for all individuals) and the maximum adaptive ROC curve represents an
improvement over both of these for most specificities. Generally, the advantage of incorporating the prior
path will increase with increasingρ.

3.2 Combining tests

The issue of optimally combining tests ata single point in time is an area of active research in different
contexts (Pepe and Thompson, 2000; Richardset al., 1996; Skateset al., 1995; Su and Liu, 1993; Kraemer,
1992). For instance, in screening for ovarian cancer using CA125 antigen (Xt ), Skateset al. (1995) use a
calculation of the risk of ovarian cancer at timet (Yt ) based onX j , j = 1,2, . . . , t. Use of an adaptive
threshold that depends on past test measurements (as in Section 3.1) can also be viewed as application of
a new test at timet , which is a linear combination of the results of tests at times 1,2, . . . , t. Our focus
here, however, is rather on theoverall accuracy of asequence of tests, where decisions are madeafter
each time of testing, rather than once-off after all test results are available.

Referring back to the hypothetical example introduced in Section 2.4, if both test results were
simultaneously available on all individuals, then the optimal linear combination (as in the linear
combination that maximizes the area under the ROC curve) of the test outcomes is well defined (Su
and Liu, 1993). This would require, however, deferring decisions on all individuals until after the second
time of testing. For illustration, application of a single test based on the optimal linear combination ofX1
andX2 (−0.25X1 + 0.75X2) has sensitivity 34% at specificity 90%. At this specificity, the optimal linear
combination has lower sensitivity than the sequential testing settings considered, although it has better
accuracy for lower specificities. It is important to stress, however, that this comparison is not central to
our development here where our focus is thesequential application of tests.

A final point to make here is that any of the methods considered in the literature to develop a
combination of tests that could be implemented at a single time point, sayYt = gt (X1, X2, . . . , Xt ),
may be regarded as yielding asequence of testsY1, Y2, . . . , Yt to which the same general principles
developed above will apply. Whatever test sequence is implemented, it remains the case that evaluation
of their overall accuracy must involve a consideration of a variety of ROC surfaces and, for instance, that
optimal implementation does not necessarily involve choice of the same threshold at each time of testing.

4. EXAMPLE OF APPLICATION

PSA has been considered as a screening tool towards early identification of prostate cancer. Etzioni
et al. (1999) use retrospective data from the randomized Beta-Carotene and Retinol Efficiency Trial
(CARET) (Thornquistet al. 1993) to model the distribution of log(total PSA) in non-diseased individuals
and in diseased individuals as a function of their time (in years) prior to prostate cancer diagnosis (u).
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Participants in the CARET study included men aged 50–65, who were at high risk of lung cancer. The
intervention (beta-carotene and retinol) had no noticeable effect on the incidence of prostate cancer.

We use an approximation to the model proposed by Etzioniet al. (1999) namely we assume that
test outcome (log(total PSA)) is distributed asN (0.35,0.6) in non-diseased individuals andN (2.23−
0.18u, 1.2) in diseased individuals atu years prior to diagnosis, with an exchangeable correlation structure
in diseased and non-diseased, withρ = 0.85. This is an approximation to the model developed by
Etzioni et al. (1999) in that, for simplicity, we assume a constant variance in the diseased and a common
correlation in diseased and non-diseased. The assumed values are, however, close to the modelled values
for the range of times to diagnosis considered here.

Weconsider the following hypothetical setting. A five year screening programme using PSA and a BP
positivity decision rule is being considered. For the evaluation of such a programme, diseased individuals
are defined to be all those who will be clinically diagnosed with prostate cancer within 10 years of the start
of the screening programme. We assume that the baseline diseased distribution is a mixture (with uniform
weights) of individuals who areu = 1,2, . . . , 10 years from clinical diagnosis. Once an individual is
diagnosed with prostate cancer, he is removed from follow-up and will remain as a false negative in the
evaluation of PSA screening accuracy if he was not screened positive prior to clinical detection of the
disease. Of interest here is the accuracy that is achievable by such a screening progamme under different
choices of interval between successive screens. This practical setting differs from the hypothetical example
considered above in that individuals do not remain available for testing after clinical diagnosis.

Figure 2 shows the equal threshold (adaptive and non-adaptive) theoretical ROC curves corresponding
to five annual screens and three biannual screens (at years 1, 3, 5). We see that three screens perform
almost as well as five and that the adaptive thresholds offer an improvement in screening accuracy over
the use of constant thresholds. The ‘MaxAdROC’ curve for three biannual visits (not shown) offers only
marginal improvement over the AdROC curve, e.g. at specificity= 90%, the maximum sensitivity is
66.7% compared to the sensitivity of 66.1% using the same adaptive percentile at each screen. Similarly,
the ‘MaxEqROC’ curve (also not shown) offers only marginal improvement over the EqROC.

While the trend in disease path might suggest potential advantage in reducing percentile thresholds
at later testing points (i.e. postponing accrual of false positives), the incremental loss of true positives to
clinical diagnosis prior to their being screened positive based on their PSA levels mitigates against this
in this setting. Thus, choice of equal thresholds across screening occasions is close to optimal here, for
each of the ROC surfaces considered. The absence of substantial improvement in accuracy by adjusting
the percentiles (cross-sectional or adaptive) at successive screens has the advantage of simplifying the
implementation of a screening mechanism. One does note, however, the gains in accuracy that can
potentially be achieved by considering alternatives to the use of thresholds that ignore subject-specific
information such as the prior path.

Consider, for example, a prostate cancer case from the CARET study, who was screened at 6, 4 and
2 years prior to diagnosis, with PSA levels recorded as 0.48, 0.75, 1.27. At 90% overall specificity, the
man’s PSA values remain well below the corresponding constant (non-adaptive) threshold of 4.76. His
adaptive thresholds for the same overall specificity would be (5.77, 1.19, 1.24) and hence he would screen
positive at the third biannual screen, which is two years prior to clinical diagnosis.

One sees further that three biannual screens offer accuracy almost equal to that of five annual screens,
particularly at lower false positive rates, which is typically where screening for a low-prevalence disease
would be implemented. Of concern, however, might be the possibility that the use of biannual screens
would result in delayed disease diagnosis relative to an annual screening programme. (This would,
perhaps, be of greater concern with fast growing and highly fatal tumours such as ovarian cancer.) For
90% specificity, however, the mean time of positive screening prior to clinical diagnosis is about 4 years
in both cases. With only biannual screens, the positivity thresholds can be more lenient (implemented at
lower percentiles) and still be associated with the same overall false positive rate.
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Fig. 2. ROC curves for five annual and three biannual PSA screens.

5. DISCUSSION

We have considered evaluation of theoverall accuracy of asequence of tests and the complexity of
the trade-offs of different test compositions in terms of the timing of accrual of false and true positives.
Acknowledgement of the issues considered here can facilitate the design of screening programmes, for
instance with regard to definitions of positivity and spacing of tests. The application to PSA considered
above illustrates how knowledge of the disease path and distributional characteristics of the screening test
may be used to this end.

We have focused here mainly on overall positivity defined according to the BP rule and we have only
considered two of the many ways in which positivity of a sequence of tests may be defined, namely those
where

• the same threshold is used for each individual at a particular time of testing, but the threshold may
differ across times of testing, or

• the sameconditional percentile is used at each time of testing, with the threshold corresponding to
that percentile differing across individuals and where the percentile used may differ across times of
testing.

In each case, accuracy may be represented by a ROC surface which can be simplified to the customary
two-dimensional representation of sensitivity versus 1-specificity either by choosing percentiles that are
the same across repeated testings, or by implementing the tests at percentiles that correspond to the
maximum sensitivity at any given specificity. The gains to be made by this latter choice will depend
on test correlation structure and the anticipated nature of the disease path. Examination of themaximum
achievable overall sensitivity for any given overall specificity also allows assessment of whether the test
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sequence is viable in terms of diagnostic accuracyat all. It may be that, even under optimal choices of
threshold, the overall accuracy of the test sequence is not sufficiently high to make it feasible for practical
implementation.

The development considered here has not addressed the choice ofwhich threshold (under whatever
definition of positivity) should be used in implementation of a test sequence. Such choices will depend on
issues such as disease prevalence as well as the costs of false positives and false negatives and the costs
of the tests themselves. In addition, with routine screening, one may wish to incorporate cost of delayed
diagnosis which will depend on the rate of advancement of the disease and disease consequences. Formal
incorporation of such factors would seem an interesting topic for further research.
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